Truncated generalized averaged Gauss quadrature rules

نویسندگان

  • Dusan Lj. Djukic
  • Lothar Reichel
  • Miodrag M. Spalevic
چکیده

Generalized averaged Gaussian quadrature formulas may yield higher accuracy than Gauss quadrature formulas that use the same moment information. This makes them attractive to use when moments or modified moments are cumbersome to evaluate. However, generalized averaged Gaussian quadrature formulas may have nodes outside the convex hull of the support of the measure defining the associated Gauss rules. It may therefore not be possible to use generalized averaged Gaussian quadrature formulas with integrands that only are defined on the convex hull of the support of the measure. Generalized averaged Gaussian quadrature formulas are determined by symmetric tridiagonal matrices. This paper investigates whether removing some of the last rows and columns of these matrices gives quadrature rules whose nodes live in the convex hull of the support of the measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized averaged Szegő quadrature rules

Szegő quadrature rules are commonly applied to integrate periodic functions on the unit circle in the complex plane. However, often it is difficult to determine the quadrature error. Recently, Spalević introduced generalized averaged Gauss quadrature rules for estimating the quadrature error obtained when applying Gauss quadrature over an interval on the real axis. We describe analogous quadrat...

متن کامل

Generalized averaged Gauss quadrature rules for the approximation of matrix functionals

The need to compute expressions of the form uf(A)v, where A is a large square matrix, u and v are vectors, and f is a function, arises in many applications, including network analysis, quantum chromodynamics, and the solution of linear discrete ill-posed problems. Commonly used approaches first reduce A to a small matrix by a few steps of the Hermitian or non-Hermitian Lanczos processes and the...

متن کامل

Degree optimal average quadrature rules for the generalized Hermite weight function

Department of Mathematics, University of Gaziantep, Gaziantep, Turkey e-mail address : [email protected] Abstract For the practical estimation of the error of Gauss quadrature rules Gauss-Kronrod rules are widely used; but, it is well known that for the generalized Hermite weight function, ωα(x) = |x|2α exp(−x2) over [−∞,∞], real positive Gauss-Kronrod rules do not exist. Among the alternati...

متن کامل

Integration Techniques for Two Dimensional Domains

Abstract In this work, three different integration techniques, which are the numerical, semi-analytical and exact integration techniques are briefly reviewed. Numerical integrations are carried out using three different Quadrature rules, which are the Classical Gauss Quadrature, Gauss Legendre and Generalized Gaussian Quadrature. Line integral method is used to perform semi-analytical integrati...

متن کامل

On generalized averaged Gaussian formulas

We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions w(x) ≡ w(α,β)(x) = (1− x)α(1 + x)β (α, β > −1) we give a necessary and sufficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2016